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$ Institute of Physics, A Mickiewicz University, 60769 Poznan, Poland 
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Abstract. A theory of bound magnetic polarons (BMPS) in dilute magnetic semiconductors is 
formulated by applying the functional integral method (FIM). The effects of the anti- 
ferromagnetic Mn-Mn interaction on BMPS in dilute systems such as Cd, ~ ,Mn,Se, 
Cd, -,Mn,Te, and Cd,_,xMn,S are included in terms of clusters. Within the framework of the 
static approximation to the FIM, the spin-flip Raman scattering spectrum and the binding 
energy of BMPS are calculated. The theoretical results are compared with available exper- 
imental data. 

1. Introduction 

Experiments on dilute magnetic semiconductors suggest the formation of bound mag- 
netic polarons (BMPS) due to the s-d (p-d) exchange interaction between the Mn2+ ions 
and electrons bound to donors (or holes to acceptors). The BMPS in Cd,-,Mn,Se, 
Cdl -.Mn,Te and Cd, -.Mn,S have been extensively studied experimentally with lumi- 
nescence [l-31 and spin-flip Raman scattering [4-81 measurements. Dietl and Spalek 
[9,10] and Dietl [ 111 used the Ginzburg-Landau theory, and treated the spin fluctuations 
using the Gaussian approximation, to formulate a theory for BMPS. Later, Swierkowski 
and Dietl [12] extended the theory beyond the Gaussian approximation. The theory of 
Heiman and co-workers [7], Wolff and Warnock [13] and Warnock and Wolff [14], 
assuming a semiclassical Mn2+ subsystem, is equivalent to that of Dietl and Spalek in 
the appropriate limit. Other theoretical investigations of BMPS either used a classical spin 
picture [3] or a cluster-type calculation [ 15-18]. The antiferromagnetic Mn-Mn exchange 
interaction has been taken into account either phenomenologically [3,7,9-151 or in the 
form of clusters [17, 181. 

In this paper a detailed version of the functional integral approach to the BMP, 
published earlier by the same authors [19], is presented, and the theory is also extended 
to include the antiferromagnetic interaction between the manganese ions, in terms of 
small clusters. It is shown that existing theories are on the level of the static 
approximation. It is also demonstrated how we can calculate the spin-flip Raman scat- 
tering spectrum with the functional integral method. Except as regards the different 
ways in which the antiferromagnetic Mn-Mn interaction is included. our results agree 
with those obtained by Dietl [ l l ] ,  in the appropriate limit. If the Mn-Mn interaction is 
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942 U Thibblin et a1 

neglected, our results agree with those obtained by Heiman and co-workers [7].  Finally 
the theoretical results are compared with available experimental data. 

2. The BMP partition function 

We start from the Golnik-Gaj-Nawrocki-Planel-Benoit (GGNPB) effective-mass Ham- 
iltonian for a BMP [l, 7 ,  lo]: 

H =p2/2m* - e2/Er - J C  s . ~ , f i ( r  - R , )  (2.1) 
I 

where E is the dielectric constant, m* the effective mass of an electron (or a hole) in the 
host semiconductor without Mn2+ ions, andJ the exchange constant. UsuallyJ is written 
in terms of N,a = Wolfor an electron and N,$ = 3N,,Jfor a hole, where N o  is the number 
of cation sites per unit volume. No& and NOB can be determined from the experimental 
data. p and r are variables associated with the electron (or hole), and RI and S, are, 
respectively, the position and spin of the jth Mn2+ ion. s is the spin of the electron 
(s = i) or the effective spin of the hole (s = 4). The first two terms in (2.1) describe the 
electron (or hole) bound to a donor (or an acceptor). We assume a wavefunction of the 
localised electron (or hole) of the form 

~ ( r )  = F(r)uo(r) = n-l 2agi '2 exp(-r/aB)uo(r) (2.2) 
where aB is the effective Bohr radius, and uO(r) is the periodic band-edge Bloch function. 
In this paper we will restrict ourselves to systems with low Mn concentration. Therefore 
we will neglect the effect of Mn2+ ions on the wavefunction (2.2). With these sim- 
plifications one can use a Hartree-type function [7,  101 

$k7 s; IS,>)- F(r)x(s, cs,>> (2.3) 

for the whole system and rewrite the Hamiltonian as 

H = E(a)  + H B M P  

where E(a)  = h2/2m*a2 - e2/m is the usual donor (or acceptor) energy. If we now 
introduce the interaction between the Mn2+ ions and an external magnetic field Bo,  the 
spin Hamiltonian for the BMP can be written as 

HBMP = Ho + Hi (2.5) 

where 

with the definitions bl = gX,uBBO, b2 = gMn,uBBO, and r = c l K I S ,  where K, = JI F(Rl)  1 *. 
In ( 2 . 6 ) ,  g* is the electron (or hole) g-factor in the host semiconductor without Mn2+ 
ions, and g,, is the g-factor of an isolated Mn" ion. The last term in (2.6) describes the 
interaction between the Mn2+ ions, with I ,  being the exchange parameter. 

We need to calculate the partition function for a given distribution of Mn2+ ions in 
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the host semiconductor. 

ZBMP = Tr[exp(-pHO - pHl>l 
Since the operators H o  and H I  do not commute, we write [20] 

943 

(2.8) 

where H , ( t )  = exp(tHo)H,  exp(-tH,), and T,  is the ordering operator with respect 
to the Matsubara time t. 

We follow the standard procedure [21-231 to construct the functional integral rep- 
resentation of (2.9). The interval [0, z] is divided into M steps tn = pn/M with n = 
0, 1, . . . , M ,  and for each tn we apply the generalised Hubbard-Stratonovich identity 
for two commuting operators A and B: 

exp(AB) = 
dx 1 dy exp[-(x2 + y 2 )  + (A + B)x + i(A - B)y] .  

--2 -= 

Then (2.10) becomes 

z M  r M  
exp(-pH0) lim T ,  I n ( n M ) - 3 / 2  dx, 1 n (nM)-?/* dy,, 

M-, x --z n = l  --cc n = l  

(2.10) 

(2.11) 

where xn andy, are two auxiliary vector fields. In the limit M + x, xn and y, become two 
continuous functions x ( t )  and y( t )  in the interval [0, p] with the boundary conditions 
x(0) = x(P) andy(0) = y(@. Let us define the measure 

c a M  c c M  

I D x I D Y . .  . = lim n (xM)-~/’ dx, ( x M ) - ~ / ~  dy, .  . .. (2.12) 
M+= - , n = l  --?c n = l  

We then arrive at the exact partition function 

The thermodynamic average is defined as 

( .  . . ) o  = Tr[exp(-pHo). . . ]/ZO. 

(2.13) 

(2.14) 

(2.15) 



944 U Thibblin et a1 

We now split the auxiliary fields as follows: 

x(z) = xo + Xf(Z) Y ( t >  = Y o  +Yf(Z> 
where 

If we define 

where 

H,, = H~ - p 2 [ r .  (xn + iyn) + s (xo - iy,)] 

equation (2.14) can be rewritten as 

where 

(2.16) 

(2.17) 

(2.18) 

1 p  
q [xf ,yf ]  = - /  (x:(z) + y T ( z ) )  d z  - In 

P O  

dz[r f (z )  '(Xf(t) + iyr(z))+ S ' ( t )  '(Xf(T) - iYf(Z))1)]) St  
(2.19) 

and r f (z )  and sf(z) are in the Heisenberg representation with respect to Hst. It is difficult 
to calculate Z B M p  from (2.18), so to continue our analysis we will neglect the time- 
dependent parts xf(z) and y,(z), and keep only the static parts xo and yo of (2.18). This 
is the static approximation which accounts for the thermodynamic fluctuations but 
neglects most of the quantum fluctuations. 

Z B M p  = ~ t - ~ "  dxo x-~'' dyo Zst (xg, yo). (2.20) 
--z --r 

Before going further, let us point out that for pure Ising coupling and with H o  = 0, the 
static approximation yields the exact result 

2 sinh[(s + 4)(/3/2)K,] N 

zBMp = sinh[(B/4)Kj] 
(2.21) 

By introducing the new variables A = i*(xo + iyo) and y = (x~, - i y o ) / d F  
equation (2.20) can be written as 

i,,, = ( 2 4 - 3  

x Tr{exp[ -j3(Ho + i r  * A / B  - s * y ) ] } .  (2.22) 

If we neglect the exchange interaction between the Mn2+ ions, that is we put Z, equal to 
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zero, then (2.22) reduces to the formula proposed by Wolff and co-workers [7,13,14] 
in their spherical model on BMPS, which treats the Mn2+ spins semiclassically. 

If in (2.22) we take the trace over the electron (or hole) spin and introduce the new 
variable A = y + bl, we then have 

Z,,, = dA I-: d h  exp[iA (A - bl)]f(PA)ZM, (2.23) 

where 

f(PA) = 2 cosh(PA/2) 

for an electron, and 

f(PA) = 2 cosh(3PA/2) + 2 cosh(PA/2) 

for a hole, and 

zMn = Tr{S,} exp[-@(80 + Eil 11 
where 

E i ~ = - b 2 - ~ S S , - ~ I i , S i * S ,  
! ' . I  

(2.24) 

(2.25) 

(2.26) 

(2.27) 

and 

fi - - A . ~ K , S , .  i (2.28) 
' - P  i 

Since we consider systems with low Mn2+ concentration we will divide the Mn2+ 
subsystem into isolated (i) Mn2+, pairs (p) ,  open triangles (t) and closed triangles (c) of 
Mn2+, and we will only take nearest-neighbour interactions into account. Furthermore, 
we let the external magnetic field be along the z axis, BO = (0, 0, BO).  8, then takes the 
form 

(2.29) 

(2.304 

(2.30b) 

(2 .30~)  

and 

H: = -bZ(Stl + St2 + St3) - 21(S,I .Sc2 + Scz *Sc3 + Sc3 *Sc,)  (2 .304 

where I denotes the nearest-neighbour exchange integral. The eigenvalues of (2.30~)- 
(2.30d) can easily be calculated and are shown in Appendix 1. 8, takes the form 



946 U Thibblin et a1 

If we use an average distance between the donor (or the acceptor) and a cluster, fi, can 
be written as 

(2.32) 

where S ,  = SP1 + S , S ,  = Stl + S t2  + Sr3 and& = SC1 + Sc2 + SC3. The calculation should 
not be sensitive to this approximation for the small clusters we are considering; however, 
if we include the interaction between more distant Mn2+ ions, this approximation needs 
to be improved. 

P2. 

Since fi, and fi, do not commute, we write (2.26) as 

ZMn = Tris,) [ exp( -/3g0) T ,  exp (2.33) 

and calculate it with the cumulant expansion. To the second order, we have 

x (A; + A?.)] (2.34) 

where 
Z ,  = Tr[exp(-Pfio)] (2.35) 

and 

( . . . ) O  = Tr[ . . . exp( - P Q O ) ] / Z O .  (2.36) 

x'l ,  . . . , xz and x; , . . . , xt are defined as 

a a a a 
a y  ay  

xi = P - (S: ) ,  xl = /3 - ( S " )  I O  

x; = P<S:)o/Y xz = PCSZ,)o/Y x; = P(s:)o/Y x;i = B(St)O/Y 

x\ = p - ( S Z )  xi = P - ( S 3 0  ay  P O  

where Y = p g M n h B B O *  
(g,npB)2x' and (gMn,uB)2f are, respectively, the longitudinal and transverse sus- 

Substituting (2.34) into (2.23) and integrating over A yields 
ceptibilities of the different clusters. 

(2.37) 

where 

c = 2, (/3/8n)3'2(&b&;2) -I/*.  (2.38) 
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The effective spin Hamiltonian has the form 

HeffW = (1/P> W ( P A ) ) +  (Ax2+ A;)/8&; + (Az - Ao)2/8&./l. 
A can be shown to be related to the spin-flip Raman shift, and 

(2.39) 

(2.40) 

is the magnetic field induced spin-flip Raman shift. The characteristic energies of the 
BMP, E!  and E ; ,  are defined as 

(2.41b) 

To perform a configurational average over the Mn2+ impurities we make use of the 
continuum approximation, and use the wavefunction (2.2) in order to derive 

2 Ki = JNoxP1 

K ,  = JNoxP3 

K ,  = JNoxP2 

x K ,  = JNoxP4 

i P 
(2.42) 

t C 

(2.43) 

where x is the concentration of Mn2+ ions, N o  the number of cations per unit volume. P1 
is the probability of having an isolated Mn2+, P2 the probability of having a pair, P3 the 
probability of having an open triangle, and P4 the probability of having a closed triangle 
of Mn2+ ions. The cluster probabilities are given in Appendix 2. With the use of (2.42) 
and (2.43) Ao, E!  and E ;  can be written as 

AO = g*PBBo + J N o X ( p i ( s f ) o  p,(Si)o + p3(s:)o + p4(s:)o)  (2.44) 

E / ,  = [ ( J N o ) 2 x / 3 2 n u & N o ] ( P l x ~  + P2xq + P3x!  + P 4 x ! )  (2.45) 

E ;  = [ ( J N ~ ) * X / ~ ~ ~ U & N ~ ] ( P ~ X :  + P2x; + P3x; + P ~ x ; ) .  (2.46) 

The effective spin Hamiltonian (2.39) has the same form as the Hamiltonian of Dietl 
and Spalek [9 ,  101 and Dietl [ l l ] ,  who used the Gaussian approximation to the spin 
fluctuations within the Ginzburg-Landau theory. However their Hamiltonian contains 
the magnetic-field-induced macroscopic magnetisation which is introduced phenom- 
enologically in the Ginzburg-Landau free-energy functional. In our derivation we 
included the Mn-Mn interaction microscopically in the form of small clusters. Hence 
the Hamiltonian obtained in this way contains microscopic expressions for the mag- 
netisation of the different clusters. In addition, the work of Swierkowski and Dietl [12] 
has gone beyond the Gaussian approximation. It should be noted that the case of zero 
magnetic field and no Mn-Mn interaction can be solved exactly at the level of static 
approximation [ 141. 
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3. Spin-flip Raman scattering spectrum 

With the simplified situation that during the spin-flip scattering the spins of all Mn" ions 
remain intact, the spin-flip spectrum can be calculated from the Fourier transform [24] 

1 
S(w) = j-: S ( t )  elWr d t  (3.1) 

of the electron (or hole) spin-spin correlation function 

S ( t )  = ([eIHfs e-'Hr) - a](s - (U)) ( 3 4  
where the Hamiltonian H is given by (2.4). The unit vector a is determined by the 
geometry of the Raman scattering experiment. 

To derive the spin-spin correlation function we start from the finite-temperature 
spin-spin Green function 

G( t )  = (T,[(e""sKrH) ~(u](s.(u")) O S Z < / 3 .  (3.3) 

G( t )  = (T,{[(e'"Os e-rHo) * a](s * a -)>W(B>)o/(W(P>)o (3.4) 

In the interaction representation, G(z) has the form 

where 

Ho,  HI and ( . . . )o are defined in the last section by (2 .6) ,  (2.7) and (2.15) respectively. 
In order to calculate the Green function, the functional integral approach will be 

used, and after a derivation similar to that in the last section C(T) is obtained as 

G(z) = (ZBMP)-' Dx 1 DY exP(- i [: ( X 2 ( t )  i- Y ' ( t > )  dr) 

+ 4 Z )  * (4t) - iY(Z>)l d .] 1. 
Within the static approximation, we have 

G,t(z) = (JG32~w-' jx dxo 1-1 dYo exP(-xi - Y 6 )  
- X  

x Tr[exp( -/3H,,)T,{[(e""sts e-""St). a ] ( s .  a*)}]. (3.7) 

Substituting in H,, from (2.17) into (3.7) and changing the variables from xo and yo to A 
and A, we have the form 

G,,(z) = (8n3Z,,)-' jx d A j X  dAexp[iA. (A - b,)]Z,,G(z,A) (3.8) 
- X  --2 
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where ZMn is given by (2.26), and 

G(z,  A> = Tr{,}{exP(Bs A>T,[(s(4 a*>]> (3.9) 

with s( z) defined as 

s(z) = exp(-ts.A)sexp(zs*A). (3.10) 

The above equations are valid for any value of the spin s. So far, spin-flip Raman 
scattering has only been observed for a donor BMP. We will therefore consider the case 
spin 4. G(z, A) is then calculated to be 

G(z,  A) = A(A) + B+(A) e-t*(eP*/20(z) + e-p*"O(-t)) 

x B-(A) e'*(e-pA/20(t) + ePA/20(-t))  (3.11) 

where O( t) is the Heaviside step function and 

A(A) = i(A * a)(A * a*) cosh(BA/2) 

B,(A) = a[a.a* - A-2(A-a ) (A .a* )  * iA-'(a X a*) .A] .  

(3.12) 

(3.13) 

For each Matsubara frequency U,, = (2n/B)n with n = 0, k l ,  k2 ,  . . . , we take the 
Fourier transform of G ( t ,  A) 

1 P  
G(iw,, A) = B / ~  G ( t ,  A) exp(iw,t) d z  = .4(A)6,n.0 

2 sinh(@A) 2 sinh(@A) + - B-(A) 
iw , -A  B io,, + A ' 

- jj B+ (A) (3.14) 

Making use of (3.14), the Fourier transform GSt(iw,) of G,,(t) is derived. 

( q  = O+),  we obtain the fourier transform GR(w) of the retarded Green function 
By performing the analytical continuation to real frequencies iw, + w + iq 

GR(t) = -i@(t)([(eiH's e-iHt) a, s - a*]) 
in the static approximation as [20] 

G R ( u )  = -(/3/2n) GSt(iw, + w + iq). 

Using the well established relation [25] 

Im GR(wj  = -4(l - e-P")S(w) 

(3.15) 

(3.16) 

where S(o) has been defined by (3. l), we have 

S ( 0 )  = (8n3zBMp)-1 dA J-: d h  exp[ih (A - b, ) ]ZM,  

x (A(A)G(w) + B+(h)eP"/*S(w - A) + B-(A)e@/26(w + A)). (3.17) 

The three terms in the right-hand side with frequencies S(w),  6(w - A) and 6(w + A) 
respectively correspond to the Faraday rotation, the Stokes shift and the anti-Stokes 
shift. 

Since we are interested in the spin-flip Raman scattering, we will neglect the Faraday 
rotation term. If we use the cumulant expansion, as in the previous section, to calculate 
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ZMn, and then integrate over A ,  we obtain the final form 

S ( o )  = - C dA exp(- i(A: B + A;)/&; - -(Az B - Ao) ' /E \ )  
ZBMP -~ 8 

x (B+(A) ePW126(w - A) + B-(A) eP"'*d(w + A)) (3.18) 

where C, A,,, E\ and E ;  are given by (2.38), and (2.44)-(2.46). 
In the case of zero external magnetic field, S(w) can be solved exactly as 

S o ( o )  w 2  exp(-@w*/&,) (3.19) 

where 

E p  = [(JN")2X/32jza3BN,,1(P1X1 + p 2 x 2  + p 3 x 3  + P 4 X 4 )  (3.20) 

and (pBgM,,)*X is just the zero-magnetic-field susceptibility of the different clusters. 
At the limit of high magnetic field, when most of the electrons have their quantisation 

axis A/A along the direction of the magnetic field, we can replace A/A in (3.13) with its 
component along the field. If we also neglect the anisotropy by setting E ;  = E L  = E , .  

equation (3.18) can again be solved to give 

S(w) = ( ~ E ~ / P A ~ W )  sinh(/3Aow/4~p)S0(w). (3.21) 

This result approaches S o ( o )  as Bo goes to zero and can be used as a good approximation 
over the whole field range. Within the theory of Dietl and Spalek [9, 101, Dietl [11] has 
neglected anisotropy to calculate S( w )  without the above high-field approximation. Our 
results (3.19) and (3.21) agree with thoseobtained by Dietl [ l l ]  in the appropriate limit, 
except as regards the different ways we include the Mn-Mn interaction. If we neglect 
the Mn-Mn interaction, our results (3.19) and (3.21) agree with those obtained by 
Heiman and co-workers [7]. 

4. Calculations and results 

4.1. Spin-pip Raman scattering for a donor BMP 

From (3.21) it can be shown that the peak position, 0, of the Stokes Raman line 
satisfies 

U* - 2 ~ ~ ~ 5  - WAO coth(/3A,6/4~,) - 4&,kBT= 0. (4.1) 

The traces are calculated using the eigenvalues in Appendix 1. The effective Bohr 
radius aB is determined from minimising the free energy with respect to a B ,  and the 
change in the Bohr radius is found to be less than 2%. We will therefore use the Bohr 
radius for x = 0. Concerning the cluster probabilities, we would like to determine 
them using magnetisation data from the same samples on which spin-flip Raman 
scattering was measured. However, since we have not found such measurements we 
will use probabilities corresponding to a random distribution of Mn2+ ions, given in 
Appendix 2, and if necessary adjust the cluster probabilities. The cluster probabilities 
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Table 1. The cluster probabilities and the parameter To used for the theoretical fits. The 
values corresponding to a random distribution (see Appendix 2) are written in parentheses. 

Cd, -,Mn,Se Cd,-,Mn,Te 

x = 0.012 x = 0.051 x = 0.035 x = 0.044 

PI 0.86 
(0.68) 

p2 0.058 

p3 0.0045 
(0.019) 

p4 0.0019 
(0.016) 

To (K) 0.4 

(0.11) 

0.53 

0.12 

0.032 
(0.033) 
0.044 

(0.049) 
1.6 

(0.52) 

(0.12) 

0.65 
(0.65) 
0.11 

0.022 

0.02 

1.4 

(0.11) 

(0.022) 

(0.02) 

0.58 

0.12 

0.02 

0.033 
(0.033) 
2.4 

(0.58) 

(0.12) 

(0.02) 

Table 2. Material parameters used in the calculations 

Quantity Symbol Cd,-,Mn,Se Cd, ~ ,Mn,Te 

Intrinsic g-factor” g* 0.52 -0.75 
Nearest-neighbour 
Mn-Mn exchange 

Intrinsic Bohr 
radius (A). aB 38 52.4 
s-d exchange 

constant (K)b I -8.3 -6.9 

constant (ev)d  ffN0 0.261 t 0.013 0.22 2 0.01 

a For the x = 0 alloy, from [27]. 
From [28] and [29]. 
For the x = 0 alloy. The Bohr radius was calculated from the effective mass m’ im, = 

0.13 and the dielectric constant K = 9.4 for Cd,_,Mn,Se [30]. For Cd,_,Mn,Te. m*/m,, = 
0.11 and K = 10.9 [8]. 

From [26] and [31]. 

used in the calculations are given in table 1. Other parameter values used in the 
calculations are given in table 2. 

The spin-flip Raman shift for Cdl -.Mn,Se with x = 0.012 is plotted in figure 1 (full 
and broken curves), as a function of magnetic field at various temperatures. The 
corresponding experimental data are indicated with full circles. In comparison with 
experimental data, the broken curve saturates too fast. This kind of behaviour was 
first observed by Gaj and co-workers [26] in another situation, namely when they tried 
to fit the Brillouin function to magnetisation data on Cd,-.Mn,Te. They found that 
the data could be fitted better, if the adjustable parameter To is introduced by replacing 
T,  in the argument of the Brillouin function, by T + To. This empirical procedure is 
supposed to take into account a weak long-range antiferromagnetic Mn-Mn inter- 
action. Since we have included only nearest-neighbour interaction, we follow the 
argument of [26], and write the magnetisation and the susceptibility for an isolated 
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I I I I 

0 20  40 
H IkGI 

Figure 1. The magnetic field and temperature 
dependence of the peak spin-flap Raman shift in 
Cd,-.Mn,Se, x = 0.012. The curves are gen- 
erated from (4.11, and the full circles are exper- 
imental data from [8]. See tables 1 and 2 for 
parameters. Note that the broken curve was gen- 
erated with To = 0. The values on the curves are 
in K.  

0 5 10 

H LkGl 

Figure 2. The magnetic field and temperature 
dependence of the peak spin-flip Raman shift in 
Cd,-,Mn,Se. x = 0.051. The curves are gen- 
erated from (4.1), and the full circles are exper- 
imental data from [8]. See tables 1 and 2 for 
parameters. The values on the curves are in K.  

&In2+ ion as 

(4.2) 

(4.3) 

(p) I 0 = 5 Z B 5 / 2 Q  

x1 = [ l / k B ( T  + TO)l(a/ay)(Sf)Oly=j 
where j = pggMnBO/kB( T + To). Tu is given in table 1 for the best theoretical fits. 

The theoretical curves for Cd,-,Mn,Se with x = 0.012, after introducing To, are 
shown in figure 1 as full curves. Figure 2 shows similar results for Cd,-,Mn,Se with 
x = 0.051. For Cd,-.Mn,Te with x = 0.035 and x = 0.044, the theoretical results are 
shown, respectively, in figures 3 and 4 (as full curves) together with experimental data 
(as full circles). 

Other than for Cd,-.Mn,Se with x = 0.012, our computed results using a random 
distribution of Mn2+ ions agree well with experiments. However, for Cdl -,Mn,Se with 
x = 0.012, we must use cluster probabilities corresponding to a stronger clustering of 
Mn2+ ions. We notice that for both Cd,-.Mn,Se and Cd,-,Mn,Te at higher Mn2+ 
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H (kG) 

Figure 3. The magnetic field and temperature 
dependence of the peak spin-flip Raman shift in 
Cd,-,Mn,Te, x = 0.035. The curves are gen- 
erated from (4.1), and the full circles are exper- 
imental data from [8]. See tables 1 and 2 for 
parameters. The values on  the curves are in K.  

0 5 10 

H IkGl  

Figure 4. The magnetic field and temperature 
dependence of the peak spin-flip Raman shift in 
Cd,-,Mn,Te, x = 0.044. The curves are gen- 
erated from (4.1), and the full circles are exper- 
imental data from [8]. See tables 1 and 2 for 
parameters. The values on the curves are in K.  

concentration, figures 3 and 4 show increasing discrepancy between theoretical curves 
and experimental values as the magnetic field gets weaker. A better fit for low magnetic 
field can be obtained by adjusting the Bohr radius, which has been done by Peterson 
and co-workers [8] when they fitted the theory of Diet1 and Spalek [9,10] to their 
experimental data. This is not unreasonable since the Bohr radius depends on the 
effective mass and the static dielectric constant, which can both depend on composition. 

4.2. Binding energy f o r  an acceptor BMP 

For an acceptor BMP in p-Cdl-,Mn,Te, with a small Bohr radius (aB = 13 A), the 
cumulant expansion and the continuum approximation in § 2 are not accurate at low 
temperatures. Hence we expect an increasing deviation of the calculated binding 
energy from the measured value. We write the binding energy for an acceptor BMP as 

E = h2/2m*a2, - e2/&aB - d 1n(ZBMp)/dg. 

Z B M p  z 2.20[(1 + P E )  ePEJ2 + (1 + 

(4.4) 

(4.5) 

In the case of zero magnetic field, using (2.35), (2.37)-(2.39), we have 

e9PEJ2] 
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Figure 5.  The magnetic part of the binding energy, calculated from the magnetic part of 
(4.6), for p-Cd,_,Mn,Te, x = 0.05. The full circles are experimental data from [3]. 

where cp is given by (3.20). The term -a  ln(Zo)/d/3 will be subtracted since it is not 
relevant to us. Then the binding energy is 

1. (4.6) 
h2 e2  j+ 4/3cp + 9 e4PEp +#(I + 9/3cp) e4PEp 

1 + / 3 ~ ~  + (1 + 9/3cp) e4Pcp 
E=---- 

2m*a2, E U ~  ( E p  ”?) ( 
Since we have not taken the complex form of the hole wavefunction into account we 
follow the procedure of Jaroszynski and co-workers [32]: we replace the exchange 
integral /3No by 0.8/3No, where /3No = -0.88 eV [26]. For a given value of x ,  the Bohr 
radius aB should be determined from minimisation of the free energy with respect to 
aB. But in view of the approximations already performed we will not take the exchange- 
induced change in the Bohr radius into account. The Bohr radius for x = 0 is aB = 
13 [14]. The cluster probabilities are calculated for a random distribution (see 
Appendix 2), and they are P I  = 0.54, P,  = 0.119, P ,  = 0.03, and P4 = 0.043. The 
nearest-neighbour exchange integral is I = -6.9 K [29], and the parameter To is chosen 
as To = 2.4 K. In figure 5 we show the magnetic part A E  of the binding energy for 
Cd,-.Mn,Te with x = 0.05. The theoretical curve is calculated from the magnetic part 
of (4.6), and the experimental data are taken from [3]. 

5. Final remarks 

We have analysed the recent theories of BMPS in diluted magnetic semiconductors by 
using the functional integral method. We have shown that existing theories are on the 
level of the static approximation, so to a certain extent they neglect the quantum 
fluctuations. We have included the antiferromagnetic interaction between the Mn2+ 
ions, in terms of small clusters with nearest-neighbour interactions. Comparison with 
experiments shows that in order to fit the theory qualitatively to experimental data, 
it is not necessary to take the nearest-neighbour Mn-Mn interaction into account in 
an exact form. One can make a good fit by phenomenologically introducing an effective 
concentration. We had to take into account the Mn-Mn interaction between more 
distant Mn2+ ions, by introducing a phenomenological parameter To. It is still a 
challenging theoretical problem to include the Mn-Mn interaction between more 
distant neighbours. 
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In order to test existing theories in more detail, it would be good to have detailed 
spin-flip Raman scattering measurements, as a function of magnetic field and tem- 
perature for various concentrations, where the magnetisation had also been measured 
on the same samples. Since there now exist measurements on BMPS in the millikelvin 
range of temperatures, it would be an interesting problem to include quantum cor- 
rections to the existing theories. Another area where there is need for more theoretical 
work is the dynamics of BMP formation where, lately, a lot of related experiments have 
been undertaken. 
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Appendix 1 

The eigenvalues of (2.30a)-(2.30d) are: 

E? = -b2m 

E: = -b2m - Z[S(S + 1) - %j] 

E! = -b2m - Z[S(S + 1) - S,(S, + 1) - 91 

Iml s f 
0 s  S s 5 ,  lml s S 

0 s Sa G 5 ,  IS, - $Is S s Sa + f, 
lml s S 

E: = -b2m - Z[S(S + 1) - Y] 0 s sa s 5 ,  IS, - f /  s S s sa + 4 ,  
Im/ s S. 

Appendix 2 

In zincblende A~l-xMn,BV' alloys the Mn2+ ions occupy a FCC sublattice. Assuming 
a random distribution we have for the cluster probabilities 

P ,  = (1 - . )I2 

P2 = 6.4 1 - X) l8 

P ,  = 6x2(1 - ~ ) ~ ~ ( 7  - 5 ~ )  

P,  = 8x2(1 - x ) ~ ~ .  

Since the cluster probabilities should satisfy, P ,  + 2P2 + 3P3 + 3P4 = 1, P4 can be 
calculated as 

P4 = 4(1 - PI - 2P,  - 3P3). 

In wurtzite alloys, where the Mn2+ ions occupy a HCP sublattice, the probabilities are 
the same except P 4 ,  but the difference from the zincblende value is not significant for 
low concentrations of Mn2+ ions. 
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